Files
telegram_expenses_controller/README.md

82 lines
3.5 KiB
Markdown

# Telegram Expenses Bot
A modular, AI-powered bot to track and manage expenses via Telegram. It uses LLMs to extract structured data from text, images, and audio, and persists them for easy reporting.
## Key Features
- 🤖 **AI Extraction**: Automatically parses amount, currency, description, and date from natural language.
- 🖼️ **Multimodal**: Supports text, images (receipts), and audio (voice notes) - *in progress*.
- 📊 **Structured Storage**: Saves data to a database with support for exporting to CSV/Google Sheets.
- 🛡️ **Audit Trail**: Keeps track of raw inputs and AI confidence scores for reliability.
- 🐳 **Dockerized**: Easy deployment using Docker and Docker Compose.
## Project Structure
The project has transitioned to a more robust, service-oriented architecture located in the `/app` directory.
- **/app**: Core application logic.
- **/ai**: LLM integration, prompts, and extraction logic.
- **/audit**: Logging and raw data storage for traceability.
- **/ingestion**: Handlers for different input types (text, image, audio, document).
- **/integrations**: External services (e.g., exporters, webhook clients).
- **/modules**: Telegram bot command handlers (`/start`, `/status`, etc.).
- **/persistence**: Database models and repositories (SQLAlchemy).
- **/preprocessing**: Data cleaning, validation, and language detection.
- **/schema**: Pydantic models for data validation and API documentation.
- **main.py**: FastAPI entry point and webhook handlers.
- **router.py**: Orchestrates the processing pipeline.
- **/config**: Static configuration files (keywords, providers).
- **/src**: Legacy/Initial implementation (Phase 1 & 2).
- **tasks.md**: Detailed project roadmap and progress tracker.
## How It Works (Workflow)
1. **Input**: The user sends a message to the Telegram bot (text, image, or voice).
2. **Ingestion**: The bot receives the update and passes it to the `/app/ingestion` layer to extract raw text.
3. **Routing**: `router.py` takes the raw text and coordinates the next steps.
4. **Extraction**: The `/app/ai/extractor.py` uses OpenAI's GPT models to parse the text into a structured `ExtractedExpense`.
5. **Audit & Classify**: The `/app/ai/classifier.py` assigns categories and a confidence score.
6. **Persistence**: If confidence is high, the expense is automatically saved via `/app/persistence/repositories.py`. If low, it awaits manual confirmation.
## Project Status
Current Phase: **Phase 3/4 - Intelligence & Processing**
- [x] **Phase 1: Infrastructure**: FastAPI, Docker, and basic input handling.
- [x] **Phase 2: Data Models**: Explicit expense states and Pydantic schemas.
- [/] **Phase 3: Logic**: Configuration loaders and provider matching (In Progress).
- [/] **Phase 4: AI Analyst**: Multimodal extraction and confidence scoring (In Progress).
## Setup & Development
### 1. Environment Variables
Copy `.env.example` to `.env` and fill in your credentials:
```bash
TELEGRAM_TOKEN=your_bot_token
OPENAI_API_KEY=your_openai_key
DATABASE_URL=mysql+pymysql://user:password@db:3306/expenses
# MySQL specific (for Docker)
MYSQL_ROOT_PASSWORD=root_password
MYSQL_DATABASE=expenses
MYSQL_USER=user
MYSQL_PASSWORD=password
```
### 2. Run with Docker
```bash
docker-compose up --build
```
### 3. Local Development (FastAPI)
```bash
pip install -r requirements.txt
uvicorn app.main:app --reload
```
### 4. Running the Bot (Polling)
For local testing without webhooks, you can run a polling script that uses the handlers in `app/modules`.
---
*Maintained by Marco Gallegos*