feat: Implement LLM and scheduler functionalities

This commit finalizes Phase 4 of the project by implementing the
LLM and scheduler integrations.

- Implements `get_smart_response` in `app/llm.py` to generate
  AI-powered responses using the OpenAI API.
- Implements a daily summary scheduler in `app/scheduler.py` using
  the `JobQueue` from `python-telegram-bot` for better integration
  with the application's event loop.
- Adds `get_events_for_day` to `app/calendar.py` to fetch daily
  events for the summary.
- Integrates the scheduler into the main application loop in
  `app/main.py`.
- Improves the date formatting in the daily summary for better
  readability.
- Updates `tasks.md` to reflect the completion of Phase 4.
This commit is contained in:
google-labs-jules[bot]
2025-12-15 23:25:52 +00:00
parent 2a8f8dd537
commit 99faa1eecb
5 changed files with 89 additions and 24 deletions

View File

@@ -89,3 +89,28 @@ def create_event(summary, start_time, end_time, attendees, calendar_id=CALENDAR_
except HttpError as error:
print(f"An error occurred: {error}")
return None
def get_events_for_day(date, calendar_id=CALENDAR_ID):
"""
Fetches all events for a given day from the calendar.
"""
try:
time_min = date.isoformat() + "T00:00:00Z"
time_max = date.isoformat() + "T23:59:59Z"
events_result = (
service.events()
.list(
calendarId=calendar_id,
timeMin=time_min,
timeMax=time_max,
singleEvents=True,
orderBy="startTime",
)
.execute()
)
return events_result.get("items", [])
except HttpError as error:
print(f"An error occurred: {error}")
return []

View File

@@ -1,15 +1,26 @@
# app/llm.py
from config import OPENAI_API_KEY
import openai
from app.config import OPENAI_API_KEY
def get_smart_response(prompt):
"""
Generates a smart response using an LLM.
"""
if not OPENAI_API_KEY:
return "OpenAI API key not configured."
print(f"Generating smart response for: {prompt}")
# TODO: Implement OpenAI API integration
return "This is a smart response."
openai.api_key = OPENAI_API_KEY
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"An error occurred with OpenAI: {e}")
return "I'm sorry, I couldn't generate a response right now."

View File

@@ -28,6 +28,7 @@ from modules.equipo import (
from modules.aprobaciones import view_pending, handle_approval_action
from modules.servicios import get_service_info
from modules.admin import get_system_status
from app.scheduler import setup_scheduler
# Enable logging
logging.basicConfig(
@@ -103,6 +104,9 @@ def main() -> None:
application.add_handler(CommandHandler("start", start))
application.add_handler(CallbackQueryHandler(button_dispatcher))
# Set up the scheduler
setup_scheduler(application)
logger.info("Starting Talía Bot...")
application.run_polling()

View File

@@ -1,27 +1,52 @@
# app/scheduler.py
import schedule
import time
from datetime import datetime
import datetime
import pytz
from telegram import Bot
from app.config import OWNER_CHAT_ID, TIMEZONE
from app.calendar import get_events_for_day
from config import TIMEZONE
def send_daily_summary():
def format_event_time(start_time_str):
"""
Formats the event start time into a user-friendly format.
"""
if "T" in start_time_str: # It's a dateTime
dt_object = datetime.datetime.fromisoformat(start_time_str)
return dt_object.strftime("%I:%M %p")
else: # It's a date
return "All day"
async def send_daily_summary(context):
"""
Sends the daily summary to the owner.
"""
print(f"[{datetime.now()}] Sending daily summary...")
# TODO: Implement the logic to fetch and send the summary
bot = context.bot
today = datetime.datetime.now(pytz.timezone(TIMEZONE)).date()
events = get_events_for_day(today)
def main():
if not events:
summary = "Good morning! You have no events scheduled for today."
else:
summary = "Good morning! Here is your schedule for today:\n\n"
for event in events:
start = event["start"].get("dateTime", event["start"].get("date"))
formatted_time = format_event_time(start)
summary += f"- {event['summary']} at {formatted_time}\n"
await bot.send_message(chat_id=OWNER_CHAT_ID, text=summary)
def setup_scheduler(application):
"""
Main function to run the scheduler.
Sets up the daily summary job.
"""
schedule.every().day.at("07:00").do(send_daily_summary)
while True:
schedule.run_pending()
time.sleep(1)
if __name__ == "__main__":
main()
tz = pytz.timezone(TIMEZONE)
job_queue = application.job_queue
job_queue.run_daily(
send_daily_summary,
time=datetime.time(hour=7, minute=0, tzinfo=tz),
chat_id=OWNER_CHAT_ID,
name="daily_summary",
)

View File

@@ -30,8 +30,8 @@ This file tracks the development tasks for the Talía project.
## Phase 4: Integrations
- [x] Implement `calendar.py` for Google Calendar integration.
- [ ] Implement `llm.py` for AI-powered responses.
- [ ] Implement `scheduler.py` for daily summaries.
- [x] Implement `llm.py` for AI-powered responses.
- [x] Implement `scheduler.py` for daily summaries.
## Log