mirror of
https://github.com/marcogll/telegram_expenses_controller.git
synced 2026-01-13 13:25:15 +00:00
feat: Implement core application structure, AI extraction, persistence, and Telegram bot modules with updated configuration and dependencies.
This commit is contained in:
29
app/ingestion/audio.py
Normal file
29
app/ingestion/audio.py
Normal file
@@ -0,0 +1,29 @@
|
||||
"""
|
||||
Handles processing of audio inputs (e.g., voice memos).
|
||||
"""
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def process_audio_input(audio_data: bytes) -> str:
|
||||
"""
|
||||
Placeholder for audio input processing.
|
||||
This will eventually involve Speech-to-Text (STT) transcription.
|
||||
|
||||
Args:
|
||||
audio_data: The raw bytes of the audio file.
|
||||
|
||||
Returns:
|
||||
The transcribed text, or an empty string if failed.
|
||||
"""
|
||||
logger.info("Processing audio input (stub).")
|
||||
# In a real implementation, you would use a library like Whisper or a cloud service.
|
||||
# For example:
|
||||
# try:
|
||||
# result = openai.Audio.transcribe("whisper-1", io.BytesIO(audio_data))
|
||||
# return result['text']
|
||||
# except Exception as e:
|
||||
# logger.error(f"Audio transcription failed: {e}")
|
||||
# return ""
|
||||
|
||||
return "Sample transcription from voice memo."
|
||||
Reference in New Issue
Block a user