feat: Implement core application structure, AI extraction, persistence, and Telegram bot modules with updated configuration and dependencies.

This commit is contained in:
Marco Gallegos
2025-12-18 12:15:04 -06:00
parent 7276e480b0
commit 899482580e
45 changed files with 1157 additions and 225 deletions

View File

29
app/ingestion/audio.py Normal file
View File

@@ -0,0 +1,29 @@
"""
Handles processing of audio inputs (e.g., voice memos).
"""
import logging
logger = logging.getLogger(__name__)
def process_audio_input(audio_data: bytes) -> str:
"""
Placeholder for audio input processing.
This will eventually involve Speech-to-Text (STT) transcription.
Args:
audio_data: The raw bytes of the audio file.
Returns:
The transcribed text, or an empty string if failed.
"""
logger.info("Processing audio input (stub).")
# In a real implementation, you would use a library like Whisper or a cloud service.
# For example:
# try:
# result = openai.Audio.transcribe("whisper-1", io.BytesIO(audio_data))
# return result['text']
# except Exception as e:
# logger.error(f"Audio transcription failed: {e}")
# return ""
return "Sample transcription from voice memo."

31
app/ingestion/document.py Normal file
View File

@@ -0,0 +1,31 @@
"""
Handles processing of document inputs (e.g., PDFs, Word docs).
"""
import logging
logger = logging.getLogger(__name__)
def process_document_input(doc_data: bytes) -> str:
"""
Placeholder for document input processing.
This will eventually involve text extraction from files like PDFs.
Args:
doc_data: The raw bytes of the document file.
Returns:
The extracted text, or an empty string if failed.
"""
logger.info("Processing document input (stub).")
# In a real implementation, you would use a library like PyMuPDF for PDFs.
# For example:
# try:
# import fitz # PyMuPDF
# with fitz.open(stream=doc_data, filetype="pdf") as doc:
# text = "".join(page.get_text() for page in doc)
# return text
# except Exception as e:
# logger.error(f"PDF processing failed: {e}")
# return ""
return "Sample text extracted from PDF document."

29
app/ingestion/image.py Normal file
View File

@@ -0,0 +1,29 @@
"""
Handles processing of image inputs (e.g., receipts).
"""
import logging
logger = logging.getLogger(__name__)
def process_image_input(image_data: bytes) -> str:
"""
Placeholder for image input processing.
This will eventually involve OCR (Optical Character Recognition).
Args:
image_data: The raw bytes of the image file.
Returns:
The extracted text from the image, or an empty string if failed.
"""
logger.info("Processing image input (stub).")
# In a real implementation, you would use a library like Tesseract or a cloud service.
# For example:
# try:
# text = pytesseract.image_to_string(Image.open(io.BytesIO(image_data)))
# return text
# except Exception as e:
# logger.error(f"OCR processing failed: {e}")
# return ""
return "Sample text extracted from receipt image."

24
app/ingestion/text.py Normal file
View File

@@ -0,0 +1,24 @@
"""
Handles processing of raw text inputs.
"""
import logging
logger = logging.getLogger(__name__)
def process_text_input(text: str) -> str:
"""
Takes raw text, normalizes it, and prepares it for AI extraction.
In the future, this could include more complex preprocessing like
language detection or PII removal.
Args:
text: The raw input text.
Returns:
The processed text.
"""
logger.info("Processing text input.")
# For now, normalization is simple. It will be moved to the preprocessing module.
normalized_text = text.lower().strip()
return normalized_text