mirror of
https://github.com/marcogll/telegram_expenses_controller.git
synced 2026-01-13 13:25:15 +00:00
feat: Implement core application structure, AI extraction, persistence, and Telegram bot modules with updated configuration and dependencies.
This commit is contained in:
0
app/ingestion/__init__.py
Normal file
0
app/ingestion/__init__.py
Normal file
29
app/ingestion/audio.py
Normal file
29
app/ingestion/audio.py
Normal file
@@ -0,0 +1,29 @@
|
||||
"""
|
||||
Handles processing of audio inputs (e.g., voice memos).
|
||||
"""
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def process_audio_input(audio_data: bytes) -> str:
|
||||
"""
|
||||
Placeholder for audio input processing.
|
||||
This will eventually involve Speech-to-Text (STT) transcription.
|
||||
|
||||
Args:
|
||||
audio_data: The raw bytes of the audio file.
|
||||
|
||||
Returns:
|
||||
The transcribed text, or an empty string if failed.
|
||||
"""
|
||||
logger.info("Processing audio input (stub).")
|
||||
# In a real implementation, you would use a library like Whisper or a cloud service.
|
||||
# For example:
|
||||
# try:
|
||||
# result = openai.Audio.transcribe("whisper-1", io.BytesIO(audio_data))
|
||||
# return result['text']
|
||||
# except Exception as e:
|
||||
# logger.error(f"Audio transcription failed: {e}")
|
||||
# return ""
|
||||
|
||||
return "Sample transcription from voice memo."
|
||||
31
app/ingestion/document.py
Normal file
31
app/ingestion/document.py
Normal file
@@ -0,0 +1,31 @@
|
||||
"""
|
||||
Handles processing of document inputs (e.g., PDFs, Word docs).
|
||||
"""
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def process_document_input(doc_data: bytes) -> str:
|
||||
"""
|
||||
Placeholder for document input processing.
|
||||
This will eventually involve text extraction from files like PDFs.
|
||||
|
||||
Args:
|
||||
doc_data: The raw bytes of the document file.
|
||||
|
||||
Returns:
|
||||
The extracted text, or an empty string if failed.
|
||||
"""
|
||||
logger.info("Processing document input (stub).")
|
||||
# In a real implementation, you would use a library like PyMuPDF for PDFs.
|
||||
# For example:
|
||||
# try:
|
||||
# import fitz # PyMuPDF
|
||||
# with fitz.open(stream=doc_data, filetype="pdf") as doc:
|
||||
# text = "".join(page.get_text() for page in doc)
|
||||
# return text
|
||||
# except Exception as e:
|
||||
# logger.error(f"PDF processing failed: {e}")
|
||||
# return ""
|
||||
|
||||
return "Sample text extracted from PDF document."
|
||||
29
app/ingestion/image.py
Normal file
29
app/ingestion/image.py
Normal file
@@ -0,0 +1,29 @@
|
||||
"""
|
||||
Handles processing of image inputs (e.g., receipts).
|
||||
"""
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def process_image_input(image_data: bytes) -> str:
|
||||
"""
|
||||
Placeholder for image input processing.
|
||||
This will eventually involve OCR (Optical Character Recognition).
|
||||
|
||||
Args:
|
||||
image_data: The raw bytes of the image file.
|
||||
|
||||
Returns:
|
||||
The extracted text from the image, or an empty string if failed.
|
||||
"""
|
||||
logger.info("Processing image input (stub).")
|
||||
# In a real implementation, you would use a library like Tesseract or a cloud service.
|
||||
# For example:
|
||||
# try:
|
||||
# text = pytesseract.image_to_string(Image.open(io.BytesIO(image_data)))
|
||||
# return text
|
||||
# except Exception as e:
|
||||
# logger.error(f"OCR processing failed: {e}")
|
||||
# return ""
|
||||
|
||||
return "Sample text extracted from receipt image."
|
||||
24
app/ingestion/text.py
Normal file
24
app/ingestion/text.py
Normal file
@@ -0,0 +1,24 @@
|
||||
"""
|
||||
Handles processing of raw text inputs.
|
||||
"""
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def process_text_input(text: str) -> str:
|
||||
"""
|
||||
Takes raw text, normalizes it, and prepares it for AI extraction.
|
||||
|
||||
In the future, this could include more complex preprocessing like
|
||||
language detection or PII removal.
|
||||
|
||||
Args:
|
||||
text: The raw input text.
|
||||
|
||||
Returns:
|
||||
The processed text.
|
||||
"""
|
||||
logger.info("Processing text input.")
|
||||
# For now, normalization is simple. It will be moved to the preprocessing module.
|
||||
normalized_text = text.lower().strip()
|
||||
return normalized_text
|
||||
Reference in New Issue
Block a user