mirror of
https://github.com/marcogll/telegram_expenses_controller.git
synced 2026-01-13 13:25:15 +00:00
feat: Implement core application structure, AI extraction, persistence, and Telegram bot modules with updated configuration and dependencies.
This commit is contained in:
60
app/ai/extractor.py
Normal file
60
app/ai/extractor.py
Normal file
@@ -0,0 +1,60 @@
|
||||
"""
|
||||
AI-powered data extraction from raw text.
|
||||
"""
|
||||
import openai
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, Any
|
||||
|
||||
from app.config import config
|
||||
from app.ai.prompts import EXTRACTOR_PROMPT
|
||||
from app.schema.base import ExtractedExpense
|
||||
|
||||
# Configure the OpenAI client
|
||||
openai.api_key = config.OPENAI_API_KEY
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def extract_expense_data(text: str) -> ExtractedExpense:
|
||||
"""
|
||||
Uses an AI model to extract structured expense data from a raw text string.
|
||||
|
||||
Args:
|
||||
text: The raw text from user input, OCR, or transcription.
|
||||
|
||||
Returns:
|
||||
An ExtractedExpense object with the data found by the AI.
|
||||
"""
|
||||
logger.info(f"Starting AI extraction for text: '{text[:100]}...'")
|
||||
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model="gpt-3.5-turbo", # Or another suitable model
|
||||
messages=[
|
||||
{"role": "system", "content": EXTRACTOR_PROMPT},
|
||||
{"role": "user", "content": text}
|
||||
],
|
||||
temperature=0.0,
|
||||
response_format={"type": "json_object"}
|
||||
)
|
||||
|
||||
# The response from OpenAI should be a JSON string in the message content
|
||||
json_response = response.choices[0].message['content']
|
||||
extracted_data = json.loads(json_response)
|
||||
|
||||
logger.info(f"AI extraction successful. Raw JSON: {extracted_data}")
|
||||
|
||||
# Add the original text to the model for audit purposes
|
||||
extracted_data['raw_text'] = text
|
||||
|
||||
return ExtractedExpense(**extracted_data)
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to decode JSON from AI response: {e}")
|
||||
# Return a model with only the raw text for manual review
|
||||
return ExtractedExpense(raw_text=text)
|
||||
except Exception as e:
|
||||
logger.error(f"An unexpected error occurred during AI extraction: {e}")
|
||||
# Return a model with only the raw text
|
||||
return ExtractedExpense(raw_text=text)
|
||||
|
||||
Reference in New Issue
Block a user