feat: Implement LLM and scheduler modules

- Implement `llm.py` with OpenAI API integration for smart responses.
- Implement `scheduler.py` to send a daily summary to the bot owner using `python-telegram-bot`'s `JobQueue`.
- Integrate the scheduler into the main application.
- Add `pytz` as a new dependency.
- Update `tasks.md` to mark all tasks as complete.
This commit is contained in:
google-labs-jules[bot]
2025-12-16 00:24:06 +00:00
parent 9654ba7dd5
commit eb680edc54
5 changed files with 69 additions and 29 deletions

View File

@@ -29,6 +29,7 @@ from modules.aprobaciones import view_pending, handle_approval_action
from modules.servicios import get_service_info
from modules.admin import get_system_status
from modules.print import print_handler
from app.scheduler import schedule_daily_summary
# Enable logging
logging.basicConfig(
@@ -89,6 +90,9 @@ def main() -> None:
application = Application.builder().token(TELEGRAM_BOT_TOKEN).build()
# Schedule daily summary
schedule_daily_summary(application)
# Conversation handler for proposing activities
conv_handler = ConversationHandler(
entry_points=[CallbackQueryHandler(propose_activity_start, pattern='^propose_activity$')],