feat: Implement LLM and scheduler modules

- Implement `llm.py` with OpenAI API integration for smart responses.
- Implement `scheduler.py` to send a daily summary to the bot owner using `python-telegram-bot`'s `JobQueue`.
- Integrate the scheduler into the main application.
- Add `pytz` as a new dependency.
- Update `tasks.md` to mark all tasks as complete.
This commit is contained in:
google-labs-jules[bot]
2025-12-16 00:24:06 +00:00
parent 9654ba7dd5
commit eb680edc54
5 changed files with 69 additions and 29 deletions

View File

@@ -1,15 +1,23 @@
# app/llm.py
import openai
from config import OPENAI_API_KEY
def get_smart_response(prompt):
"""
Generates a smart response using an LLM.
Generates a smart response using the OpenAI API.
"""
if not OPENAI_API_KEY:
return "OpenAI API key not configured."
return "Error: OpenAI API key is not configured."
print(f"Generating smart response for: {prompt}")
# TODO: Implement OpenAI API integration
return "This is a smart response."
try:
client = openai.OpenAI(api_key=OPENAI_API_KEY)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"An error occurred while communicating with OpenAI: {e}"