mirror of
https://github.com/marcogll/talia_bot.git
synced 2026-01-13 13:25:19 +00:00
Merge pull request #20 from marcogll/feature/flow-engine-implementation-15654864159042246464
Implement Flow-Based Conversation Engine
This commit is contained in:
@@ -7,3 +7,4 @@ google-auth-oauthlib
|
|||||||
openai
|
openai
|
||||||
pytz
|
pytz
|
||||||
python-dotenv
|
python-dotenv
|
||||||
|
python-dateutil
|
||||||
|
|||||||
@@ -29,8 +29,9 @@ N8N_WEBHOOK_URL = os.getenv("N8N_WEBHOOK_URL")
|
|||||||
N8N_TEST_WEBHOOK_URL = os.getenv("N8N_TEST_WEBHOOK_URL")
|
N8N_TEST_WEBHOOK_URL = os.getenv("N8N_TEST_WEBHOOK_URL")
|
||||||
|
|
||||||
# Configuración de Vikunja
|
# Configuración de Vikunja
|
||||||
VIKUNJA_API_URL = os.getenv("VIKUNJA_API_URL", "https://tasks.soul23.cloud/api/v1")
|
VIKUNJA_API_URL = os.getenv("VIKUNJA_BASE_URL")
|
||||||
VIKUNJA_API_TOKEN = os.getenv("VIKUNJA_API_TOKEN")
|
VIKUNJA_API_TOKEN = os.getenv("VIKUNJA_TOKEN")
|
||||||
|
VIKUNJA_INBOX_PROJECT_ID = os.getenv("VIKUNJA_INBOX_PROJECT_ID")
|
||||||
|
|
||||||
# Llave de la API de OpenAI para usar modelos de lenguaje (como GPT)
|
# Llave de la API de OpenAI para usar modelos de lenguaje (como GPT)
|
||||||
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
||||||
|
|||||||
@@ -32,8 +32,20 @@ def setup_database():
|
|||||||
)
|
)
|
||||||
""")
|
""")
|
||||||
|
|
||||||
|
cursor.execute("""
|
||||||
|
CREATE TABLE IF NOT EXISTS conversations (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
user_id INTEGER NOT NULL,
|
||||||
|
flow_id TEXT NOT NULL,
|
||||||
|
current_step_id INTEGER NOT NULL,
|
||||||
|
collected_data TEXT,
|
||||||
|
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||||
|
FOREIGN KEY (user_id) REFERENCES users (telegram_id)
|
||||||
|
)
|
||||||
|
""")
|
||||||
|
|
||||||
conn.commit()
|
conn.commit()
|
||||||
logger.info("Database setup complete. 'users' table is ready.")
|
logger.info("Database setup complete. 'users' and 'conversations' tables are ready.")
|
||||||
except sqlite3.Error as e:
|
except sqlite3.Error as e:
|
||||||
logger.error(f"Database error during setup: {e}")
|
logger.error(f"Database error during setup: {e}")
|
||||||
finally:
|
finally:
|
||||||
|
|||||||
@@ -34,9 +34,17 @@ from talia_bot.modules.aprobaciones import view_pending, handle_approval_action
|
|||||||
from talia_bot.modules.servicios import get_service_info
|
from talia_bot.modules.servicios import get_service_info
|
||||||
from talia_bot.modules.admin import get_system_status
|
from talia_bot.modules.admin import get_system_status
|
||||||
from talia_bot.modules.debug import print_handler
|
from talia_bot.modules.debug import print_handler
|
||||||
from talia_bot.modules.create_tag import create_tag_conv_handler
|
import json
|
||||||
from talia_bot.modules.vikunja import vikunja_conv_handler
|
from telegram import InlineKeyboardButton, InlineKeyboardMarkup
|
||||||
|
import io
|
||||||
|
from talia_bot.modules.vikunja import get_projects, add_comment_to_task, update_task_status, get_project_tasks, create_task
|
||||||
from talia_bot.db import setup_database
|
from talia_bot.db import setup_database
|
||||||
|
from talia_bot.modules.flow_engine import FlowEngine
|
||||||
|
from talia_bot.modules.transcription import transcribe_audio
|
||||||
|
from talia_bot.modules.llm_engine import analyze_client_pitch
|
||||||
|
from talia_bot.modules.calendar import create_event
|
||||||
|
from talia_bot.modules.mailer import send_email_with_attachment
|
||||||
|
from talia_bot.config import ADMIN_ID, VIKUNJA_INBOX_PROJECT_ID
|
||||||
|
|
||||||
from talia_bot.scheduler import schedule_daily_summary
|
from talia_bot.scheduler import schedule_daily_summary
|
||||||
|
|
||||||
@@ -46,6 +54,304 @@ logging.basicConfig(
|
|||||||
)
|
)
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Instanciamos el motor de flujos
|
||||||
|
flow_engine = FlowEngine()
|
||||||
|
|
||||||
|
async def send_step_message(update: Update, context: ContextTypes.DEFAULT_TYPE, step: dict, collected_data: dict = None):
|
||||||
|
"""
|
||||||
|
Envía el mensaje de un paso del flujo, construyendo el teclado dinámicamente.
|
||||||
|
"""
|
||||||
|
keyboard = []
|
||||||
|
input_type = step.get("input_type")
|
||||||
|
collected_data = collected_data or {}
|
||||||
|
|
||||||
|
if input_type == "keyboard" and "options" in step:
|
||||||
|
for option in step["options"]:
|
||||||
|
keyboard.append([InlineKeyboardButton(option, callback_data=option)])
|
||||||
|
elif input_type == "dynamic_keyboard_vikunja":
|
||||||
|
projects = await get_projects()
|
||||||
|
if projects:
|
||||||
|
for project in projects:
|
||||||
|
keyboard.append([InlineKeyboardButton(project['title'], callback_data=f"project_{project['id']}")])
|
||||||
|
else:
|
||||||
|
await update.effective_message.reply_text("No se pudieron cargar los proyectos de Vikunja.")
|
||||||
|
return
|
||||||
|
elif input_type == "dynamic_keyboard_vikunja_tasks":
|
||||||
|
project_id_str = collected_data.get('PROJECT_SELECT', '').split('_')[-1]
|
||||||
|
if project_id_str.isdigit():
|
||||||
|
project_id = int(project_id_str)
|
||||||
|
tasks = await get_project_tasks(project_id)
|
||||||
|
if tasks:
|
||||||
|
for task in tasks:
|
||||||
|
keyboard.append([InlineKeyboardButton(task['title'], callback_data=f"task_{task['id']}")])
|
||||||
|
else:
|
||||||
|
await update.effective_message.reply_text("Este proyecto no tiene tareas. Puedes añadir una o seleccionar otro proyecto.")
|
||||||
|
# Aquí podríamos opcionalmente terminar el flujo o devolver al paso anterior.
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
await update.effective_message.reply_text("Error: No se pudo identificar el proyecto para buscar tareas.")
|
||||||
|
return
|
||||||
|
|
||||||
|
reply_markup = InlineKeyboardMarkup(keyboard) if keyboard else None
|
||||||
|
|
||||||
|
# Si la actualización es de un botón, edita el mensaje. Si no, envía uno nuevo.
|
||||||
|
if update.callback_query:
|
||||||
|
await update.callback_query.edit_message_text(
|
||||||
|
text=step["question"], reply_markup=reply_markup, parse_mode='Markdown'
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
await update.message.reply_text(
|
||||||
|
text=step["question"], reply_markup=reply_markup, parse_mode='Markdown'
|
||||||
|
)
|
||||||
|
|
||||||
|
async def universal_handler(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
|
||||||
|
"""
|
||||||
|
Handler universal que gestiona todos los flujos de conversación.
|
||||||
|
"""
|
||||||
|
user_id = update.effective_user.id
|
||||||
|
user_role = get_user_role(user_id)
|
||||||
|
|
||||||
|
state = flow_engine.get_conversation_state(user_id)
|
||||||
|
|
||||||
|
if state:
|
||||||
|
response_data = None
|
||||||
|
if update.callback_query:
|
||||||
|
response_data = update.callback_query.data
|
||||||
|
await update.callback_query.answer()
|
||||||
|
elif update.message and update.message.text:
|
||||||
|
response_data = update.message.text
|
||||||
|
elif update.message and update.message.voice:
|
||||||
|
voice_file = await update.message.voice.get_file()
|
||||||
|
file_buffer = io.BytesIO()
|
||||||
|
await voice_file.download_to_memory(file_buffer)
|
||||||
|
file_buffer.seek(0)
|
||||||
|
file_buffer.name = "voice_message.oga"
|
||||||
|
|
||||||
|
await update.message.reply_text("Transcribiendo audio... ⏳")
|
||||||
|
response_data = await transcribe_audio(file_buffer)
|
||||||
|
if response_data is None:
|
||||||
|
await update.message.reply_text("Lo siento, no pude entender el audio. ¿Podrías intentarlo de nuevo?")
|
||||||
|
return
|
||||||
|
elif update.message and update.message.document:
|
||||||
|
# Guardamos la información del archivo para el paso de resolución
|
||||||
|
response_data = {
|
||||||
|
"file_id": update.message.document.file_id,
|
||||||
|
"file_name": update.message.document.file_name,
|
||||||
|
}
|
||||||
|
|
||||||
|
if response_data:
|
||||||
|
result = flow_engine.handle_response(user_id, response_data)
|
||||||
|
|
||||||
|
if result.get("status") == "in_progress":
|
||||||
|
# Pasamos los datos recolectados para que el siguiente paso los pueda usar si es necesario
|
||||||
|
current_state = flow_engine.get_conversation_state(user_id)
|
||||||
|
await send_step_message(update, context, result["step"], current_state.get("collected_data"))
|
||||||
|
elif result.get("status") == "complete":
|
||||||
|
await handle_flow_resolution(update, context, result)
|
||||||
|
elif result.get("status") == "error":
|
||||||
|
await update.effective_message.reply_text(f"Error: {result.get('message', 'Ocurrió un error.')}")
|
||||||
|
return
|
||||||
|
|
||||||
|
trigger = None
|
||||||
|
is_callback = False
|
||||||
|
if update.callback_query:
|
||||||
|
trigger = update.callback_query.data
|
||||||
|
is_callback = True
|
||||||
|
await update.callback_query.answer()
|
||||||
|
elif update.message and update.message.text:
|
||||||
|
trigger = update.message.text
|
||||||
|
|
||||||
|
# Flujo automático para clientes
|
||||||
|
if not trigger and user_role == 'client' and not state:
|
||||||
|
flow_to_start = next((f for f in flow_engine.flows if f.get("trigger_automatic")), None)
|
||||||
|
if flow_to_start:
|
||||||
|
logger.info(f"Starting automatic flow '{flow_to_start['id']}' for client {user_id}")
|
||||||
|
initial_step = flow_engine.start_flow(user_id, flow_to_start['id'])
|
||||||
|
if initial_step:
|
||||||
|
await send_step_message(update, context, initial_step)
|
||||||
|
return
|
||||||
|
|
||||||
|
if trigger:
|
||||||
|
for flow in flow_engine.flows:
|
||||||
|
if trigger == flow.get('trigger_button') or trigger == flow.get('trigger_command'):
|
||||||
|
logger.info(f"Starting flow '{flow['id']}' for user {user_id} via trigger '{trigger}'")
|
||||||
|
initial_step = flow_engine.start_flow(user_id, flow['id'])
|
||||||
|
if initial_step:
|
||||||
|
await send_step_message(update, context, initial_step)
|
||||||
|
return
|
||||||
|
|
||||||
|
# Si ninguna acción de flujo se disparó y es un callback, podría ser una acción del menú principal
|
||||||
|
if is_callback:
|
||||||
|
logger.info(f"Callback '{trigger}' no fue manejado por el motor de flujos. Pasando al dispatcher legado.")
|
||||||
|
await button_dispatcher(update, context)
|
||||||
|
|
||||||
|
|
||||||
|
async def handle_flow_resolution(update: Update, context: ContextTypes.DEFAULT_TYPE, result: dict):
|
||||||
|
"""
|
||||||
|
Maneja la acción final de un flujo completado.
|
||||||
|
"""
|
||||||
|
resolution_step = result.get("resolution")
|
||||||
|
collected_data = result.get("data", {})
|
||||||
|
|
||||||
|
if not resolution_step:
|
||||||
|
logger.info(f"Flujo completado sin paso de resolución. Datos: {collected_data}")
|
||||||
|
final_message = "Proceso completado. ✅"
|
||||||
|
if update.callback_query:
|
||||||
|
await update.callback_query.edit_message_text(final_message)
|
||||||
|
else:
|
||||||
|
await update.effective_message.reply_text(final_message)
|
||||||
|
return
|
||||||
|
|
||||||
|
resolution_type = resolution_step.get("input_type")
|
||||||
|
final_message = resolution_step.get("question", "Hecho. ✅")
|
||||||
|
|
||||||
|
logger.info(f"Resolviendo flujo con tipo '{resolution_type}' y datos: {collected_data}")
|
||||||
|
|
||||||
|
# Lógica de resolución
|
||||||
|
if resolution_type == "resolution_api_success":
|
||||||
|
action = collected_data.get("ACTION_TYPE")
|
||||||
|
task_id_str = collected_data.get("TASK_SELECT", "").split('_')[-1]
|
||||||
|
update_content = collected_data.get("UPDATE_CONTENT")
|
||||||
|
|
||||||
|
if task_id_str.isdigit():
|
||||||
|
task_id = int(task_id_str)
|
||||||
|
if action == "💬 Agregar Comentario":
|
||||||
|
await add_comment_to_task(task_id=task_id, comment=update_content)
|
||||||
|
elif action == "🔄 Actualizar Estatus":
|
||||||
|
await update_task_status(task_id=task_id, status_text=update_content)
|
||||||
|
elif action == "✅ Marcar Completado":
|
||||||
|
await update_task_status(task_id=task_id, is_done=True)
|
||||||
|
|
||||||
|
elif resolution_type == "resolution_notify_admin":
|
||||||
|
admin_id = context.bot_data.get("ADMIN_ID", ADMIN_ID) # Obtener ADMIN_ID de config
|
||||||
|
if admin_id:
|
||||||
|
user_info = (
|
||||||
|
f"✨ **Nueva Solicitud de Onboarding** ✨\n\n"
|
||||||
|
f"Un nuevo candidato ha completado el formulario:\n\n"
|
||||||
|
f"👤 **Nombre:** {collected_data.get('ONBOARD_START', 'N/A')}\n"
|
||||||
|
f"🏢 **Base:** {collected_data.get('ONBOARD_ORIGIN', 'N/A')}\n"
|
||||||
|
f"📧 **Email:** {collected_data.get('ONBOARD_EMAIL', 'N/A')}\n"
|
||||||
|
f"📱 **Teléfono:** {collected_data.get('ONBOARD_PHONE', 'N/A')}\n\n"
|
||||||
|
f"Por favor, revisa y añade al usuario al sistema si es aprobado."
|
||||||
|
)
|
||||||
|
await context.bot.send_message(chat_id=admin_id, text=user_info, parse_mode='Markdown')
|
||||||
|
|
||||||
|
elif resolution_type == "rag_analysis_resolution":
|
||||||
|
pitch = collected_data.get("IDEA_PITCH")
|
||||||
|
display_name = update.effective_user.full_name
|
||||||
|
final_message = await analyze_client_pitch(pitch, display_name)
|
||||||
|
|
||||||
|
elif resolution_type == "resolution_event_created":
|
||||||
|
from dateutil.parser import parse
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
|
||||||
|
date_str = collected_data.get("BLOCK_DATE", "Hoy")
|
||||||
|
time_str = collected_data.get("BLOCK_TIME", "")
|
||||||
|
title = collected_data.get("BLOCK_TITLE", "Bloqueado por Talia")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Interpretar la fecha
|
||||||
|
if date_str.lower() == 'hoy':
|
||||||
|
start_date = datetime.now()
|
||||||
|
elif date_str.lower() == 'mañana':
|
||||||
|
start_date = datetime.now() + timedelta(days=1)
|
||||||
|
else:
|
||||||
|
start_date = parse(date_str)
|
||||||
|
|
||||||
|
# Interpretar el rango de tiempo
|
||||||
|
time_parts = [part.strip() for part in time_str.replace('a', '-').split('-')]
|
||||||
|
start_time_obj = parse(time_parts[0])
|
||||||
|
end_time_obj = parse(time_parts[1])
|
||||||
|
|
||||||
|
start_time = start_date.replace(hour=start_time_obj.hour, minute=start_time_obj.minute, second=0, microsecond=0)
|
||||||
|
end_time = start_date.replace(hour=end_time_obj.hour, minute=end_time_obj.minute, second=0, microsecond=0)
|
||||||
|
|
||||||
|
except (ValueError, IndexError):
|
||||||
|
final_message = "❌ Formato de fecha u hora no reconocido. Por favor, usa algo como 'Hoy', 'Mañana', o '10am - 11am'."
|
||||||
|
if update.callback_query:
|
||||||
|
await update.callback_query.edit_message_text(final_message)
|
||||||
|
else:
|
||||||
|
await update.effective_message.reply_text(final_message)
|
||||||
|
return
|
||||||
|
|
||||||
|
event = await asyncio.to_thread(
|
||||||
|
create_event,
|
||||||
|
summary=title,
|
||||||
|
start_time=start_time,
|
||||||
|
end_time=end_time,
|
||||||
|
attendees=[] # Añadir asistentes si fuera necesario
|
||||||
|
)
|
||||||
|
if not event:
|
||||||
|
final_message = "❌ Hubo un error al crear el evento en el calendario."
|
||||||
|
|
||||||
|
elif resolution_type == "resolution_saved":
|
||||||
|
idea_action = collected_data.get("IDEA_ACTION")
|
||||||
|
idea_content = collected_data.get('IDEA_CONTENT', 'N/A')
|
||||||
|
|
||||||
|
if idea_action == "✅ Crear Tarea":
|
||||||
|
if VIKUNJA_INBOX_PROJECT_ID:
|
||||||
|
new_task = await create_task(
|
||||||
|
project_id=int(VIKUNJA_INBOX_PROJECT_ID),
|
||||||
|
title=idea_content
|
||||||
|
)
|
||||||
|
if new_task:
|
||||||
|
final_message = "Tarea creada exitosamente en tu bandeja de entrada de Vikunja."
|
||||||
|
else:
|
||||||
|
final_message = "❌ Hubo un error al crear la tarea en Vikunja."
|
||||||
|
else:
|
||||||
|
final_message = "❌ Error: El ID del proyecto de bandeja de entrada de Vikunja no está configurado."
|
||||||
|
|
||||||
|
elif idea_action == "📓 Guardar Nota":
|
||||||
|
admin_id = ADMIN_ID
|
||||||
|
idea_category = collected_data.get('IDEA_CATEGORY', 'N/A')
|
||||||
|
message = (
|
||||||
|
f"🧠 **Nueva Idea Capturada (Guardada como Nota)** 🧠\n\n"
|
||||||
|
f"**Categoría:** {idea_category}\n\n"
|
||||||
|
f"**Contenido:**\n{idea_content}"
|
||||||
|
)
|
||||||
|
await context.bot.send_message(chat_id=admin_id, text=message, parse_mode='Markdown')
|
||||||
|
|
||||||
|
elif resolution_type == "resolution_email_sent":
|
||||||
|
file_info = collected_data.get("UPLOAD_FILE")
|
||||||
|
if isinstance(file_info, dict):
|
||||||
|
file_id = file_info.get("file_id")
|
||||||
|
file_name = file_info.get("file_name")
|
||||||
|
|
||||||
|
if file_id and file_name:
|
||||||
|
file_obj = await context.bot.get_file(file_id)
|
||||||
|
file_buffer = io.BytesIO()
|
||||||
|
await file_obj.download_to_memory(file_buffer)
|
||||||
|
file_buffer.seek(0)
|
||||||
|
|
||||||
|
success = await send_email_with_attachment(
|
||||||
|
file_content=file_buffer.getvalue(),
|
||||||
|
filename=file_name,
|
||||||
|
subject=f"Print Job: {file_name}"
|
||||||
|
)
|
||||||
|
if not success:
|
||||||
|
final_message = "❌ Hubo un error al enviar el archivo a la impresora."
|
||||||
|
else:
|
||||||
|
final_message = "❌ No se encontró la información del archivo."
|
||||||
|
else:
|
||||||
|
final_message = "❌ Error en el formato de los datos del archivo."
|
||||||
|
|
||||||
|
elif resolution_type == "system_output_nfc":
|
||||||
|
# Lógica para devolver un JSON con los datos para el tag NFC
|
||||||
|
nfc_data = {
|
||||||
|
"name": collected_data.get("WIZARD_START"),
|
||||||
|
"employee_id": collected_data.get("NUM_EMP"),
|
||||||
|
"branch": collected_data.get("SUCURSAL"),
|
||||||
|
"telegram_id": collected_data.get("TELEGRAM_ID"),
|
||||||
|
}
|
||||||
|
final_message = f"```json\n{json.dumps(nfc_data, indent=2)}\n```"
|
||||||
|
|
||||||
|
# Enviar el mensaje de confirmación final
|
||||||
|
if update.callback_query:
|
||||||
|
await update.callback_query.edit_message_text(final_message)
|
||||||
|
else:
|
||||||
|
await update.effective_message.reply_text(final_message)
|
||||||
|
|
||||||
|
|
||||||
async def start(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
|
async def start(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
|
||||||
"""
|
"""
|
||||||
Se ejecuta cuando el usuario escribe /start.
|
Se ejecuta cuando el usuario escribe /start.
|
||||||
@@ -56,20 +362,17 @@ async def start(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
|
|||||||
|
|
||||||
logger.info(f"Usuario {chat_id} inició conversación con el rol: {user_role}")
|
logger.info(f"Usuario {chat_id} inició conversación con el rol: {user_role}")
|
||||||
|
|
||||||
# Obtenemos el texto y los botones de bienvenida desde el módulo de onboarding
|
|
||||||
response_text, reply_markup = onboarding_handle_start(user_role)
|
response_text, reply_markup = onboarding_handle_start(user_role)
|
||||||
|
|
||||||
# Respondemos al usuario
|
await update.message.reply_text(response_text, reply_markup=reply_markup, parse_mode='Markdown')
|
||||||
await update.message.reply_text(response_text, reply_markup=reply_markup)
|
|
||||||
|
|
||||||
async def button_dispatcher(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
|
async def button_dispatcher(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
|
||||||
"""
|
"""
|
||||||
Esta función maneja los clics en los botones del menú.
|
Dispatcher legado para manejar botones que no inician flujos.
|
||||||
Dependiendo de qué botón se presione, ejecuta una acción diferente.
|
|
||||||
"""
|
"""
|
||||||
query = update.callback_query
|
query = update.callback_query
|
||||||
await query.answer()
|
# No se necesita await query.answer() aquí porque ya se llamó en universal_handler
|
||||||
logger.info(f"El despachador recibió una consulta: {query.data}")
|
logger.info(f"Dispatcher legado manejando consulta: {query.data}")
|
||||||
|
|
||||||
response_text = "Acción no reconocida."
|
response_text = "Acción no reconocida."
|
||||||
reply_markup = None
|
reply_markup = None
|
||||||
@@ -91,34 +394,32 @@ async def button_dispatcher(update: Update, context: ContextTypes.DEFAULT_TYPE)
|
|||||||
try:
|
try:
|
||||||
if query.data in simple_handlers:
|
if query.data in simple_handlers:
|
||||||
handler = simple_handlers[query.data]
|
handler = simple_handlers[query.data]
|
||||||
logger.info(f"Ejecutando simple_handler para: {query.data}")
|
|
||||||
if asyncio.iscoroutinefunction(handler):
|
if asyncio.iscoroutinefunction(handler):
|
||||||
response_text = await handler()
|
response_text = await handler()
|
||||||
else:
|
else:
|
||||||
response_text = handler()
|
response_text = handler()
|
||||||
elif query.data in complex_handlers:
|
elif query.data in complex_handlers:
|
||||||
handler = complex_handlers[query.data]
|
handler = complex_handlers[query.data]
|
||||||
logger.info(f"Ejecutando complex_handler para: {query.data}")
|
|
||||||
if asyncio.iscoroutinefunction(handler):
|
if asyncio.iscoroutinefunction(handler):
|
||||||
response_text, reply_markup = await handler()
|
response_text, reply_markup = await handler()
|
||||||
else:
|
else:
|
||||||
response_text, reply_markup = handler()
|
response_text, reply_markup = handler()
|
||||||
elif query.data.startswith(('approve:', 'reject:')):
|
elif query.data.startswith(('approve:', 'reject:')):
|
||||||
logger.info(f"Ejecutando acción de aprobación: {query.data}")
|
|
||||||
response_text = handle_approval_action(query.data)
|
response_text = handle_approval_action(query.data)
|
||||||
elif query.data == 'start_create_tag':
|
elif query.data == 'start_create_tag':
|
||||||
response_text = "Para crear un tag, por favor usa el comando /create_tag."
|
response_text = "Para crear un tag, por favor usa el comando /create_tag."
|
||||||
else:
|
else:
|
||||||
logger.warning(f"Consulta no manejada por el despachador: {query.data}")
|
# Si llega aquí, es una acción que ni el motor ni el dispatcher conocen.
|
||||||
await query.edit_message_text(text=response_text)
|
await query.edit_message_text(text=f"Lo siento, la acción '{query.data}' no se reconoce.")
|
||||||
return
|
return
|
||||||
except Exception as exc:
|
except Exception as exc:
|
||||||
logger.exception(f"Error al procesar la acción {query.data}: {exc}")
|
logger.exception(f"Error al procesar la acción {query.data} en el dispatcher legado: {exc}")
|
||||||
response_text = "❌ Ocurrió un error al procesar tu solicitud. Intenta de nuevo."
|
response_text = "❌ Ocurrió un error al procesar tu solicitud."
|
||||||
reply_markup = None
|
reply_markup = None
|
||||||
|
|
||||||
await query.edit_message_text(text=response_text, reply_markup=reply_markup, parse_mode='Markdown')
|
await query.edit_message_text(text=response_text, reply_markup=reply_markup, parse_mode='Markdown')
|
||||||
|
|
||||||
|
|
||||||
def main() -> None:
|
def main() -> None:
|
||||||
"""Función principal que arranca el bot."""
|
"""Función principal que arranca el bot."""
|
||||||
if not TELEGRAM_BOT_TOKEN:
|
if not TELEGRAM_BOT_TOKEN:
|
||||||
@@ -130,25 +431,19 @@ def main() -> None:
|
|||||||
application = Application.builder().token(TELEGRAM_BOT_TOKEN).build()
|
application = Application.builder().token(TELEGRAM_BOT_TOKEN).build()
|
||||||
schedule_daily_summary(application)
|
schedule_daily_summary(application)
|
||||||
|
|
||||||
# El orden de los handlers es crucial para que las conversaciones funcionen.
|
# Handlers principales
|
||||||
application.add_handler(create_tag_conv_handler())
|
|
||||||
application.add_handler(vikunja_conv_handler())
|
|
||||||
|
|
||||||
conv_handler = ConversationHandler(
|
|
||||||
entry_points=[CallbackQueryHandler(propose_activity_start, pattern='^propose_activity$')],
|
|
||||||
states={
|
|
||||||
DESCRIPTION: [MessageHandler(filters.TEXT & ~filters.COMMAND, get_description)],
|
|
||||||
DURATION: [MessageHandler(filters.TEXT & ~filters.COMMAND, get_duration)],
|
|
||||||
},
|
|
||||||
fallbacks=[CommandHandler('cancel', cancel_proposal)],
|
|
||||||
per_message=False
|
|
||||||
)
|
|
||||||
application.add_handler(conv_handler)
|
|
||||||
|
|
||||||
application.add_handler(CommandHandler("start", start))
|
application.add_handler(CommandHandler("start", start))
|
||||||
application.add_handler(CommandHandler("print", print_handler))
|
application.add_handler(CommandHandler("print", print_handler))
|
||||||
|
|
||||||
application.add_handler(CallbackQueryHandler(button_dispatcher))
|
# El handler universal para flujos (prioridad 0)
|
||||||
|
application.add_handler(CallbackQueryHandler(universal_handler), group=0)
|
||||||
|
|
||||||
|
# El dispatcher legado se mantiene para callbacks no manejados por el motor de flujos (prioridad 1)
|
||||||
|
# Nota: La lógica de paso ahora está dentro del universal_handler
|
||||||
|
application.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, universal_handler), group=0)
|
||||||
|
application.add_handler(MessageHandler(filters.VOICE, universal_handler), group=0)
|
||||||
|
application.add_handler(MessageHandler(filters.Document.ALL, universal_handler), group=0)
|
||||||
|
|
||||||
|
|
||||||
logger.info("Iniciando Talía Bot...")
|
logger.info("Iniciando Talía Bot...")
|
||||||
application.run_polling()
|
application.run_polling()
|
||||||
|
|||||||
134
talia_bot/modules/flow_engine.py
Normal file
134
talia_bot/modules/flow_engine.py
Normal file
@@ -0,0 +1,134 @@
|
|||||||
|
# talia_bot/modules/flow_engine.py
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from talia_bot.db import get_db_connection
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
class FlowEngine:
|
||||||
|
def __init__(self):
|
||||||
|
self.flows = self._load_flows()
|
||||||
|
|
||||||
|
def _load_flows(self):
|
||||||
|
"""Loads and flattens flow definitions from the JSON file."""
|
||||||
|
try:
|
||||||
|
with open('talia_bot/data/flows.json', 'r', encoding='utf-8') as f:
|
||||||
|
all_flows_by_role = json.load(f)
|
||||||
|
|
||||||
|
flattened_flows = []
|
||||||
|
for role, data in all_flows_by_role.items():
|
||||||
|
if 'flows' in data:
|
||||||
|
for flow in data['flows']:
|
||||||
|
flow['role'] = role
|
||||||
|
flattened_flows.append(flow)
|
||||||
|
return flattened_flows
|
||||||
|
except FileNotFoundError:
|
||||||
|
logger.error("flows.json not found.")
|
||||||
|
return []
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
logger.error("Error decoding flows.json.")
|
||||||
|
return []
|
||||||
|
|
||||||
|
def get_flow(self, flow_id):
|
||||||
|
"""Retrieves a specific flow by its ID."""
|
||||||
|
for flow in self.flows:
|
||||||
|
if flow['id'] == flow_id:
|
||||||
|
return flow
|
||||||
|
return None
|
||||||
|
|
||||||
|
def get_conversation_state(self, user_id):
|
||||||
|
"""Gets the current conversation state for a user from the database."""
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
cursor.execute("SELECT flow_id, current_step_id, collected_data FROM conversations WHERE user_id = ?", (user_id,))
|
||||||
|
state = cursor.fetchone()
|
||||||
|
conn.close()
|
||||||
|
if state:
|
||||||
|
return {
|
||||||
|
"flow_id": state['flow_id'],
|
||||||
|
"current_step_id": state['current_step_id'],
|
||||||
|
"collected_data": json.loads(state['collected_data']) if state['collected_data'] else {}
|
||||||
|
}
|
||||||
|
return None
|
||||||
|
|
||||||
|
def start_flow(self, user_id, flow_id):
|
||||||
|
"""Starts a new flow for a user."""
|
||||||
|
flow = self.get_flow(flow_id)
|
||||||
|
if not flow:
|
||||||
|
return None
|
||||||
|
|
||||||
|
initial_step = flow['steps'][0]
|
||||||
|
self.update_conversation_state(user_id, flow_id, initial_step['step_id'], {})
|
||||||
|
return initial_step
|
||||||
|
|
||||||
|
def update_conversation_state(self, user_id, flow_id, step_id, collected_data):
|
||||||
|
"""Creates or updates the conversation state in the database."""
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
cursor.execute("""
|
||||||
|
INSERT OR REPLACE INTO conversations (user_id, flow_id, current_step_id, collected_data)
|
||||||
|
VALUES (?, ?, ?, ?)
|
||||||
|
""", (user_id, flow_id, step_id, json.dumps(collected_data)))
|
||||||
|
conn.commit()
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
def handle_response(self, user_id, response_data):
|
||||||
|
"""
|
||||||
|
Handles a user's response, saves the data, and returns the next action.
|
||||||
|
Returns a dictionary with the status and the next step or final data.
|
||||||
|
"""
|
||||||
|
state = self.get_conversation_state(user_id)
|
||||||
|
if not state:
|
||||||
|
return {"status": "error", "message": "No conversation state found."}
|
||||||
|
|
||||||
|
flow = self.get_flow(state['flow_id'])
|
||||||
|
if not flow:
|
||||||
|
return {"status": "error", "message": f"Flow '{state['flow_id']}' not found."}
|
||||||
|
|
||||||
|
current_step = next((step for step in flow['steps'] if step['step_id'] == state['current_step_id']), None)
|
||||||
|
if not current_step:
|
||||||
|
self.end_flow(user_id)
|
||||||
|
return {"status": "error", "message": "Current step not found in flow."}
|
||||||
|
|
||||||
|
# Save the user's response using the meaningful variable name
|
||||||
|
if 'variable' in current_step:
|
||||||
|
variable_name = current_step['variable']
|
||||||
|
state['collected_data'][variable_name] = response_data
|
||||||
|
else:
|
||||||
|
logger.warning(f"Step {current_step['step_id']} in flow {flow['id']} has no 'variable' defined.")
|
||||||
|
state['collected_data'][f"step_{current_step['step_id']}_response"] = response_data
|
||||||
|
|
||||||
|
next_step_id = state['current_step_id'] + 1
|
||||||
|
next_step = next((step for step in flow['steps'] if step['step_id'] == next_step_id), None)
|
||||||
|
|
||||||
|
if next_step:
|
||||||
|
# Check if the next step is a resolution step, which ends the data collection
|
||||||
|
if next_step.get('input_type', '').startswith('resolution_'):
|
||||||
|
logger.info(f"Flow {state['flow_id']} reached resolution for user {user_id}.")
|
||||||
|
self.end_flow(user_id)
|
||||||
|
return {
|
||||||
|
"status": "complete",
|
||||||
|
"resolution": next_step,
|
||||||
|
"data": state['collected_data']
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
# It's a regular step, so update state and return it
|
||||||
|
self.update_conversation_state(user_id, state['flow_id'], next_step_id, state['collected_data'])
|
||||||
|
return {"status": "in_progress", "step": next_step}
|
||||||
|
else:
|
||||||
|
# No more steps, the flow is complete
|
||||||
|
logger.info(f"Flow {state['flow_id']} ended for user {user_id}. Data: {state['collected_data']}")
|
||||||
|
self.end_flow(user_id)
|
||||||
|
return {
|
||||||
|
"status": "complete",
|
||||||
|
"resolution": None,
|
||||||
|
"data": state['collected_data']
|
||||||
|
}
|
||||||
|
|
||||||
|
def end_flow(self, user_id):
|
||||||
|
"""Ends a flow for a user by deleting their conversation state."""
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
cursor.execute("DELETE FROM conversations WHERE user_id = ?", (user_id,))
|
||||||
|
conn.commit()
|
||||||
|
conn.close()
|
||||||
@@ -2,33 +2,67 @@
|
|||||||
# Este script se encarga de la comunicación con la inteligencia artificial de OpenAI.
|
# Este script se encarga de la comunicación con la inteligencia artificial de OpenAI.
|
||||||
|
|
||||||
import openai
|
import openai
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
from talia_bot.config import OPENAI_API_KEY, OPENAI_MODEL
|
from talia_bot.config import OPENAI_API_KEY, OPENAI_MODEL
|
||||||
|
|
||||||
def get_smart_response(prompt):
|
logger = logging.getLogger(__name__)
|
||||||
"""
|
|
||||||
Genera una respuesta inteligente usando la API de OpenAI.
|
|
||||||
|
|
||||||
Parámetros:
|
async def get_smart_response(prompt: str, system_message: str = "Eres un asistente útil.") -> str:
|
||||||
- prompt: El texto o pregunta que le enviamos a la IA.
|
"""
|
||||||
|
Genera una respuesta inteligente usando la API de OpenAI de forma asíncrona.
|
||||||
"""
|
"""
|
||||||
# Verificamos que tengamos la llave de la API configurada
|
|
||||||
if not OPENAI_API_KEY:
|
if not OPENAI_API_KEY:
|
||||||
|
logger.error("OPENAI_API_KEY no está configurada.")
|
||||||
return "Error: La llave de la API de OpenAI no está configurada."
|
return "Error: La llave de la API de OpenAI no está configurada."
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Creamos el cliente de OpenAI
|
client = openai.AsyncOpenAI(api_key=OPENAI_API_KEY)
|
||||||
client = openai.OpenAI(api_key=OPENAI_API_KEY)
|
|
||||||
|
|
||||||
# Solicitamos una respuesta al modelo configurado
|
response = await client.chat.completions.create(
|
||||||
response = client.chat.completions.create(
|
|
||||||
model=OPENAI_MODEL,
|
model=OPENAI_MODEL,
|
||||||
messages=[
|
messages=[
|
||||||
{"role": "system", "content": "Eres un asistente útil."},
|
{"role": "system", "content": system_message},
|
||||||
{"role": "user", "content": prompt},
|
{"role": "user", "content": prompt},
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
# Devolvemos el contenido de la respuesta limpia (sin espacios extras)
|
|
||||||
return response.choices[0].message.content.strip()
|
return response.choices[0].message.content.strip()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
# Si algo sale mal, devolvemos el error
|
logger.error(f"Ocurrió un error al comunicarse con OpenAI: {e}")
|
||||||
return f"Ocurrió un error al comunicarse con OpenAI: {e}"
|
return f"Ocurrió un error al comunicarse con OpenAI: {e}"
|
||||||
|
|
||||||
|
async def analyze_client_pitch(pitch: str, display_name: str) -> str:
|
||||||
|
"""
|
||||||
|
Analiza el pitch de un cliente contra una lista de servicios y genera una respuesta de ventas.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with open('talia_bot/data/services.json', 'r', encoding='utf-8') as f:
|
||||||
|
services = json.load(f)
|
||||||
|
except (FileNotFoundError, json.JSONDecodeError) as e:
|
||||||
|
logger.error(f"Error al cargar o decodificar services.json: {e}")
|
||||||
|
return "Lo siento, estoy teniendo problemas para acceder a nuestra lista de servicios en este momento."
|
||||||
|
|
||||||
|
services_description = "\n".join([f"- {s['service_name']}: {s['description']}" for s in services])
|
||||||
|
|
||||||
|
system_message = f"""
|
||||||
|
Eres Talia, la asistente personal de {display_name}. Tu objetivo es actuar como un filtro de ventas inteligente.
|
||||||
|
Analiza la necesidad del cliente y compárala con la lista de servicios que ofrece {display_name}.
|
||||||
|
Tu respuesta debe seguir estas reglas estrictamente:
|
||||||
|
1. Identifica cuál de los servicios de la lista es el más adecuado para la necesidad del cliente.
|
||||||
|
2. Confirma que el proyecto del cliente es interesante y encaja perfectamente con el servicio que identificaste. Menciona el nombre del servicio.
|
||||||
|
3. Cierra la conversación de manera profesional y tranquilizadora, indicando que ya has pasado el expediente a {display_name} y que él lo revisará personalmente.
|
||||||
|
4. Sé concisa, profesional y amable. No hagas preguntas, solo proporciona la respuesta de cierre.
|
||||||
|
"""
|
||||||
|
|
||||||
|
prompt = f"""
|
||||||
|
**Servicios Ofrecidos:**
|
||||||
|
{services_description}
|
||||||
|
|
||||||
|
**Necesidad del Cliente:**
|
||||||
|
"{pitch}"
|
||||||
|
|
||||||
|
**Tu Tarea:**
|
||||||
|
Genera la respuesta de cierre ideal siguiendo las reglas del system prompt.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return await get_smart_response(prompt, system_message)
|
||||||
|
|||||||
56
talia_bot/modules/mailer.py
Normal file
56
talia_bot/modules/mailer.py
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
# talia_bot/modules/mailer.py
|
||||||
|
import smtplib
|
||||||
|
import ssl
|
||||||
|
from email.mime.multipart import MIMEMultipart
|
||||||
|
from email.mime.base import MIMEBase
|
||||||
|
from email import encoders
|
||||||
|
import logging
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
from talia_bot.config import (
|
||||||
|
SMTP_SERVER, SMTP_PORT, SMTP_USER, SMTP_PASSWORD,
|
||||||
|
IMAP_USER, PRINTER_EMAIL
|
||||||
|
)
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
async def send_email_with_attachment(file_content: bytes, filename: str, subject: str):
|
||||||
|
"""
|
||||||
|
Sends an email with an attachment using SMTP.
|
||||||
|
"""
|
||||||
|
if not all([SMTP_SERVER, SMTP_PORT, SMTP_USER, SMTP_PASSWORD, PRINTER_EMAIL]):
|
||||||
|
logger.error("SMTP settings are not fully configured.")
|
||||||
|
return False
|
||||||
|
|
||||||
|
message = MIMEMultipart()
|
||||||
|
message["From"] = IMAP_USER
|
||||||
|
message["To"] = PRINTER_EMAIL
|
||||||
|
message["Subject"] = subject
|
||||||
|
|
||||||
|
part = MIMEBase("application", "octet-stream")
|
||||||
|
part.set_payload(file_content)
|
||||||
|
encoders.encode_base64(part)
|
||||||
|
part.add_header(
|
||||||
|
"Content-Disposition",
|
||||||
|
f"attachment; filename= {filename}",
|
||||||
|
)
|
||||||
|
message.attach(part)
|
||||||
|
text = message.as_string()
|
||||||
|
|
||||||
|
try:
|
||||||
|
context = ssl.create_default_context()
|
||||||
|
|
||||||
|
# Usamos asyncio.to_thread para correr el código síncrono de smtplib
|
||||||
|
def _send_mail():
|
||||||
|
with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as server:
|
||||||
|
server.starttls(context=context)
|
||||||
|
server.login(SMTP_USER, SMTP_PASSWORD)
|
||||||
|
server.sendmail(IMAP_USER, PRINTER_EMAIL, text)
|
||||||
|
logger.info(f"Email sent to {PRINTER_EMAIL} for printing.")
|
||||||
|
|
||||||
|
await asyncio.to_thread(_send_mail)
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to send email: {e}")
|
||||||
|
return False
|
||||||
37
talia_bot/modules/transcription.py
Normal file
37
talia_bot/modules/transcription.py
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
# talia_bot/modules/transcription.py
|
||||||
|
import logging
|
||||||
|
import openai
|
||||||
|
from talia_bot.config import OPENAI_API_KEY
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
async def transcribe_audio(audio_file) -> str | None:
|
||||||
|
"""
|
||||||
|
Transcribes an audio file using OpenAI's Whisper model with the modern API call.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
audio_file: A file-like object containing the audio data with a 'name' attribute.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The transcribed text as a string, or None if transcription fails.
|
||||||
|
"""
|
||||||
|
if not OPENAI_API_KEY:
|
||||||
|
logger.error("Cannot transcribe audio: OPENAI_API_KEY is not configured.")
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
client = openai.AsyncOpenAI(api_key=OPENAI_API_KEY)
|
||||||
|
|
||||||
|
transcription = await client.audio.transcriptions.create(
|
||||||
|
model="whisper-1",
|
||||||
|
file=audio_file
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info("Successfully transcribed audio.")
|
||||||
|
return transcription.text
|
||||||
|
except openai.APIError as e:
|
||||||
|
logger.error(f"OpenAI API error during transcription: {e}")
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"An unexpected error occurred during transcription: {e}")
|
||||||
|
return None
|
||||||
@@ -1,27 +1,14 @@
|
|||||||
# app/modules/vikunja.py
|
# talia_bot/modules/vikunja.py
|
||||||
# Este módulo maneja la integración con Vikunja para la gestión de tareas.
|
# Este módulo maneja la integración con Vikunja para la gestión de proyectos y tareas.
|
||||||
|
|
||||||
import requests
|
|
||||||
import logging
|
import logging
|
||||||
from telegram import InlineKeyboardButton, InlineKeyboardMarkup, Update
|
import httpx
|
||||||
from telegram.ext import (
|
|
||||||
ConversationHandler,
|
|
||||||
CommandHandler,
|
|
||||||
CallbackQueryHandler,
|
|
||||||
MessageHandler,
|
|
||||||
filters,
|
|
||||||
ContextTypes,
|
|
||||||
)
|
|
||||||
|
|
||||||
from config import VIKUNJA_API_URL, VIKUNJA_API_TOKEN
|
from talia_bot.config import VIKUNJA_API_URL, VIKUNJA_API_TOKEN
|
||||||
from permissions import is_admin
|
|
||||||
|
|
||||||
# Configuración del logger
|
# Configuración del logger
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
# Definición de los estados de la conversación para añadir y editar tareas
|
|
||||||
SELECTING_ACTION, ADDING_TASK, SELECTING_TASK_TO_EDIT, EDITING_TASK = range(4)
|
|
||||||
|
|
||||||
def get_vikunja_headers():
|
def get_vikunja_headers():
|
||||||
"""Devuelve los headers necesarios para la API de Vikunja."""
|
"""Devuelve los headers necesarios para la API de Vikunja."""
|
||||||
return {
|
return {
|
||||||
@@ -29,154 +16,121 @@ def get_vikunja_headers():
|
|||||||
"Content-Type": "application/json",
|
"Content-Type": "application/json",
|
||||||
}
|
}
|
||||||
|
|
||||||
def get_tasks():
|
async def get_projects():
|
||||||
"""
|
"""
|
||||||
Obtiene y formatea la lista de tareas de Vikunja.
|
Obtiene la lista de proyectos de Vikunja de forma asíncrona.
|
||||||
Esta función es síncrona y devuelve un string.
|
Devuelve una lista de diccionarios de proyectos o None si hay un error.
|
||||||
"""
|
"""
|
||||||
if not VIKUNJA_API_TOKEN:
|
if not VIKUNJA_API_TOKEN:
|
||||||
return "Error: VIKUNJA_API_TOKEN no configurado."
|
logger.error("VIKUNJA_API_TOKEN no está configurado.")
|
||||||
|
return None
|
||||||
|
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
try:
|
try:
|
||||||
response = requests.get(f"{VIKUNJA_API_URL}/projects/1/tasks", headers=get_vikunja_headers())
|
response = await client.get(f"{VIKUNJA_API_URL}/projects", headers=get_vikunja_headers())
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
tasks = response.json()
|
return response.json()
|
||||||
|
except httpx.HTTPStatusError as e:
|
||||||
if not tasks:
|
logger.error(f"Error de HTTP al obtener proyectos de Vikunja: {e.response.status_code} - {e.response.text}")
|
||||||
return "No tienes tareas pendientes en Vikunja."
|
return None
|
||||||
|
|
||||||
text = "📋 *Tus Tareas en Vikunja*\n\n"
|
|
||||||
for task in sorted(tasks, key=lambda t: t.get('id', 0))[:10]:
|
|
||||||
status = "✅" if task.get('done') else "⏳"
|
|
||||||
text += f"{status} `{task.get('id')}`: *{task.get('title')}*\n"
|
|
||||||
return text
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error al obtener tareas de Vikunja: {e}")
|
logger.error(f"Error al obtener proyectos de Vikunja: {e}")
|
||||||
return f"Error al conectar con Vikunja: {e}"
|
return None
|
||||||
|
|
||||||
async def vikunja_menu(update: Update, context: ContextTypes.DEFAULT_TYPE) -> int:
|
async def get_project_tasks(project_id: int):
|
||||||
"""Muestra el menú principal de acciones de Vikunja."""
|
"""
|
||||||
query = update.callback_query
|
Obtiene las tareas de un proyecto específico de forma asíncrona.
|
||||||
await query.answer()
|
"""
|
||||||
|
if not VIKUNJA_API_TOKEN:
|
||||||
|
logger.error("VIKUNJA_API_TOKEN no está configurado.")
|
||||||
|
return None
|
||||||
|
|
||||||
keyboard = [
|
async with httpx.AsyncClient() as client:
|
||||||
[InlineKeyboardButton("Añadir Tarea", callback_data='add_task')],
|
|
||||||
[InlineKeyboardButton("Editar Tarea", callback_data='edit_task_start')],
|
|
||||||
[InlineKeyboardButton("Volver", callback_data='cancel')],
|
|
||||||
]
|
|
||||||
reply_markup = InlineKeyboardMarkup(keyboard)
|
|
||||||
|
|
||||||
tasks_list = get_tasks()
|
|
||||||
await query.edit_message_text(text=f"{tasks_list}\n\nSelecciona una acción:", reply_markup=reply_markup, parse_mode='Markdown')
|
|
||||||
return SELECTING_ACTION
|
|
||||||
|
|
||||||
async def request_task_title(update: Update, context: ContextTypes.DEFAULT_TYPE) -> int:
|
|
||||||
"""Solicita al usuario el título de la nueva tarea."""
|
|
||||||
query = update.callback_query
|
|
||||||
await query.answer()
|
|
||||||
await query.edit_message_text("Por favor, introduce el título de la nueva tarea:")
|
|
||||||
return ADDING_TASK
|
|
||||||
|
|
||||||
async def add_task(update: Update, context: ContextTypes.DEFAULT_TYPE) -> int:
|
|
||||||
"""Añade una nueva tarea a Vikunja."""
|
|
||||||
task_title = update.message.text
|
|
||||||
try:
|
try:
|
||||||
data = {"title": task_title, "project_id": 1}
|
response = await client.get(f"{VIKUNJA_API_URL}/projects/{project_id}/tasks", headers=get_vikunja_headers())
|
||||||
response = requests.post(f"{VIKUNJA_API_URL}/tasks", headers=get_vikunja_headers(), json=data)
|
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
await update.message.reply_text(f"✅ Tarea añadida: *{task_title}*", parse_mode='Markdown')
|
return response.json()
|
||||||
|
except httpx.HTTPStatusError as e:
|
||||||
|
logger.error(f"Error de HTTP al obtener tareas del proyecto {project_id}: {e.response.status_code}")
|
||||||
|
return None
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error al añadir tarea a Vikunja: {e}")
|
logger.error(f"Error al obtener tareas del proyecto {project_id}: {e}")
|
||||||
await update.message.reply_text(f"Error al añadir tarea: {e}")
|
return None
|
||||||
|
|
||||||
return ConversationHandler.END
|
async def add_comment_to_task(task_id: int, comment: str):
|
||||||
|
"""
|
||||||
async def select_task_to_edit(update: Update, context: ContextTypes.DEFAULT_TYPE) -> int:
|
Añade un comentario a una tarea específica.
|
||||||
"""Muestra los botones para seleccionar qué tarea editar."""
|
"""
|
||||||
query = update.callback_query
|
if not VIKUNJA_API_TOKEN:
|
||||||
await query.answer()
|
logger.error("VIKUNJA_API_TOKEN no está configurado.")
|
||||||
|
return False
|
||||||
|
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
try:
|
try:
|
||||||
response = requests.get(f"{VIKUNJA_API_URL}/projects/1/tasks", headers=get_vikunja_headers())
|
data = {"comment": comment}
|
||||||
|
response = await client.post(f"{VIKUNJA_API_URL}/tasks/{task_id}/comments", headers=get_vikunja_headers(), json=data)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
tasks = [task for task in response.json() if not task.get('done')]
|
logger.info(f"Comentario añadido a la tarea {task_id}.")
|
||||||
|
return True
|
||||||
if not tasks:
|
except httpx.HTTPStatusError as e:
|
||||||
await query.edit_message_text("No hay tareas pendientes para editar.")
|
logger.error(f"Error de HTTP al añadir comentario a la tarea {task_id}: {e.response.status_code}")
|
||||||
return ConversationHandler.END
|
return False
|
||||||
|
|
||||||
keyboard = []
|
|
||||||
for task in sorted(tasks, key=lambda t: t.get('id', 0))[:10]:
|
|
||||||
keyboard.append([InlineKeyboardButton(
|
|
||||||
f"{task.get('id')}: {task.get('title')}",
|
|
||||||
callback_data=f"edit_task:{task.get('id')}"
|
|
||||||
)])
|
|
||||||
keyboard.append([InlineKeyboardButton("Cancelar", callback_data='cancel')])
|
|
||||||
|
|
||||||
reply_markup = InlineKeyboardMarkup(keyboard)
|
|
||||||
await query.edit_message_text("Selecciona la tarea que quieres editar:", reply_markup=reply_markup)
|
|
||||||
return SELECTING_TASK_TO_EDIT
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error al obtener tareas para editar: {e}")
|
logger.error(f"Error al añadir comentario a la tarea {task_id}: {e}")
|
||||||
await query.edit_message_text("Error al obtener la lista de tareas.")
|
return False
|
||||||
return ConversationHandler.END
|
|
||||||
|
|
||||||
async def request_new_task_title(update: Update, context: ContextTypes.DEFAULT_TYPE) -> int:
|
async def update_task_status(task_id: int, is_done: bool = None, status_text: str = None):
|
||||||
"""Solicita el nuevo título para la tarea seleccionada."""
|
"""
|
||||||
query = update.callback_query
|
Actualiza una tarea en Vikunja.
|
||||||
await query.answer()
|
- Si `is_done` es un booleano, actualiza el estado de completado.
|
||||||
|
- Si `status_text` es un string, añade un comentario con ese estado.
|
||||||
task_id = query.data.split(':')[1]
|
"""
|
||||||
context.user_data['task_id_to_edit'] = task_id
|
if not VIKUNJA_API_TOKEN:
|
||||||
|
logger.error("VIKUNJA_API_TOKEN no está configurado.")
|
||||||
await query.edit_message_text(f"Introduce el nuevo título para la tarea `{task_id}`:", parse_mode='Markdown')
|
return False
|
||||||
return EDITING_TASK
|
|
||||||
|
|
||||||
async def edit_task(update: Update, context: ContextTypes.DEFAULT_TYPE) -> int:
|
|
||||||
"""Actualiza el título de una tarea en Vikunja."""
|
|
||||||
new_title = update.message.text
|
|
||||||
task_id = context.user_data.get('task_id_to_edit')
|
|
||||||
|
|
||||||
if not task_id:
|
|
||||||
await update.message.reply_text("Error: No se encontró el ID de la tarea a editar.")
|
|
||||||
return ConversationHandler.END
|
|
||||||
|
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
try:
|
try:
|
||||||
data = {"title": new_title}
|
if is_done is not None:
|
||||||
response = requests.put(f"{VIKUNJA_API_URL}/tasks/{task_id}", headers=get_vikunja_headers(), json=data)
|
data = {"done": is_done}
|
||||||
|
response = await client.put(f"{VIKUNJA_API_URL}/tasks/{task_id}", headers=get_vikunja_headers(), json=data)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
await update.message.reply_text(f"✅ Tarea `{task_id}` actualizada a *{new_title}*", parse_mode='Markdown')
|
logger.info(f"Estado de la tarea {task_id} actualizado a {'completado' if is_done else 'pendiente'}.")
|
||||||
|
return True
|
||||||
|
|
||||||
|
if status_text:
|
||||||
|
return await add_comment_to_task(task_id, f"Nuevo estatus: {status_text}")
|
||||||
|
|
||||||
|
except httpx.HTTPStatusError as e:
|
||||||
|
logger.error(f"Error de HTTP al actualizar la tarea {task_id}: {e.response.status_code}")
|
||||||
|
return False
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error al editar la tarea {task_id}: {e}")
|
logger.error(f"Error al actualizar la tarea {task_id}: {e}")
|
||||||
await update.message.reply_text("Error al actualizar la tarea.")
|
return False
|
||||||
finally:
|
return False
|
||||||
del context.user_data['task_id_to_edit']
|
|
||||||
|
|
||||||
return ConversationHandler.END
|
async def create_task(project_id: int, title: str, due_date: str = None):
|
||||||
|
"""
|
||||||
|
Crea una nueva tarea en un proyecto específico.
|
||||||
|
"""
|
||||||
|
if not VIKUNJA_API_TOKEN:
|
||||||
|
logger.error("VIKUNJA_API_TOKEN no está configurado.")
|
||||||
|
return None
|
||||||
|
|
||||||
async def cancel(update: Update, context: ContextTypes.DEFAULT_TYPE) -> int:
|
async with httpx.AsyncClient() as client:
|
||||||
"""Cancela la conversación actual."""
|
try:
|
||||||
query = update.callback_query
|
data = {"project_id": project_id, "title": title}
|
||||||
await query.answer()
|
if due_date:
|
||||||
await query.edit_message_text("Operación cancelada.")
|
data["due_date"] = due_date
|
||||||
return ConversationHandler.END
|
|
||||||
|
|
||||||
def vikunja_conv_handler():
|
response = await client.post(f"{VIKUNJA_API_URL}/tasks", headers=get_vikunja_headers(), json=data)
|
||||||
"""Crea el ConversationHandler para el flujo de Vikunja."""
|
response.raise_for_status()
|
||||||
return ConversationHandler(
|
task = response.json()
|
||||||
entry_points=[CallbackQueryHandler(vikunja_menu, pattern='^manage_vikunja$')],
|
logger.info(f"Tarea '{title}' creada en el proyecto {project_id}.")
|
||||||
states={
|
return task
|
||||||
SELECTING_ACTION: [
|
except httpx.HTTPStatusError as e:
|
||||||
CallbackQueryHandler(request_task_title, pattern='^add_task$'),
|
logger.error(f"Error de HTTP al crear la tarea: {e.response.status_code}")
|
||||||
CallbackQueryHandler(select_task_to_edit, pattern='^edit_task_start$'),
|
return None
|
||||||
CallbackQueryHandler(cancel, pattern='^cancel$'),
|
except Exception as e:
|
||||||
],
|
logger.error(f"Error al crear la tarea: {e}")
|
||||||
ADDING_TASK: [MessageHandler(filters.TEXT & ~filters.COMMAND, add_task)],
|
return None
|
||||||
SELECTING_TASK_TO_EDIT: [
|
|
||||||
CallbackQueryHandler(request_new_task_title, pattern=r'^edit_task:\d+$'),
|
|
||||||
CallbackQueryHandler(cancel, pattern='^cancel$'),
|
|
||||||
],
|
|
||||||
EDITING_TASK: [MessageHandler(filters.TEXT & ~filters.COMMAND, edit_task)],
|
|
||||||
},
|
|
||||||
fallbacks=[CommandHandler('cancel', cancel)],
|
|
||||||
)
|
|
||||||
|
|||||||
Reference in New Issue
Block a user